intermediate2-3 hours

How to Implement RAG in Production: Complete Python Guide

Build production RAG systems with Pixeltable. Handle large datasets, optimize embeddings, and scale reliably.

Docs

Challenge

Production RAG requires handling large document collections, managing embeddings, optimizing retrieval, and coordinating multiple systems—adding complexity and operational overhead.

Solution

Pixeltable unifies the entire RAG stack. Automatic document processing, embedding management, vector indexing, and retrieval optimization in one framework.

Implementation Steps

Step 1 of 1

Scalable document processing and embedding setup

import pixeltable as pxt
from pixeltable.functions import openai, huggingface
# Create production document store
documents = pxt.create_table('production_documents', {
'document': pxt.Document,
'title': pxt.String,
'source': pxt.String,
'document_type': pxt.String
})
# Automatic text extraction and chunking
documents.add_computed_column(
raw_text=pxt.functions.extract_text(documents.document)
)
# Create chunks for retrieval
chunks = pxt.create_view('document_chunks', documents)

💡 Automatic text extraction and chunking for production use.

Use arrow keys to navigate

Key Benefits

70% faster RAG development
Automatic embedding management
Built-in caching cuts API costs 60%
Declarative workflows

Real Applications

Enterprise knowledge bases
Customer support chatbots
Research and analysis platforms

Prerequisites

Understanding of vector embeddings
Experience with Python and API integration

Technical Needs

Python 3.8+
OpenAI API key for LLM generation
8GB+ RAM for embedding processing

Performance

Development Speed
vs building from scratch
10x faster

Ready to Get Started?

Install Pixeltable and build your own how to implement rag in production: complete python guide in minutes.