Your AI Data Infrastructure
The only Python library that provides incremental storage, transformation, indexing, and orchestration of your multimodal data.
Build powerful AI applications:
Multimodal AI Applications
Build multimodal AI apps and agentic workloads with a few lines of code without losing flexibility. Ship to production in days, not months.
1. Create Multimodal Table
Define a schema for videos and their metadata - the foundation for any AI application.
Asset | Category | Metadata |
---|
1import pixeltable as pxt23# Create a table for multimodal assets4media = pxt.create_table("media_assets", {5 "asset": pxt.Video,6 "category": pxt.String,7 "metadata": pxt.Json8})
A flexible table for any media type - videos, images, audio, documents.
Declarative. Multimodal. Incremental.
Pixeltable automates storage, orchestration, incremental computation, & model execution. Focus on logic, not infrastructure.
1. Unified Data Foundation
Natively manage diverse data types (images, videos, audio, docs, embeddings) without duplication. Persistent, versioned tables. Eliminate separate DBs/stores.
1import pixeltable as pxt23# Create a directory for your tables4pxt.create_dir('demo_project')56# Define table with image and text columns7img_table = pxt.create_table(8 'demo_project.images',9 {10 'input_img': pxt.Image,11 'raw_text': pxt.String # For UDF example in Step 212 }13)1415# Insert data (paths or URLs and text)16img_table.insert([17 {'input_img': 'image1.jpg', 'raw_text': 'Text for image 1'},18 {'input_img': 'image2.png', 'raw_text': 'Text for image 2'}19])
Unify Storage and Orchestration
pip install pixeltable
→Your entire AI data stack
Reduction in pipeline complexity
Simplify your AI data pipelines with declarative processing
Faster development cycles
Accelerate your ML development with automated workflows
Lower infrastructure costs
Optimize resource usage with intelligent scaling
* Performance metrics based on typical use cases and internal benchmarks.
Build Production-Ready AI Applications
Accelerate your multimodal workflows with unified data infrastructure for AI.
Computer Vision
Automate complex CV workflows with unified data management and declarative Python.
frames.add_computed_column(
objects=yolox(frames.frame)
)
RAG & Semantic Search
Build reliable RAG systems with auto-synced multimodal indexes, simplifying vector DB management.
docs.add_embedding_index(
'content', embedding=clip
)
Build AI Agents Faster
Unified infrastructure for agent data, state, and tools. Focus on agent logic, not plumbing.
@pxt.udf
def agent_tool(query: str):
return process(query)
A New Kind of Multimodal AI DatabaseStart building with Pixeltable today
Join ML engineers and data scientists using Pixeltable to build powerful multimodal AI applications with unified data management and orchestration.